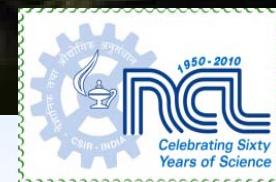


THE SCIENCE OF POLYMERS : PAST, PRESENT AND FUTURE

Thiruvananthapuram, June 23, 2012

DR. S. SIVARAM


**A 201, Polymers & Advanced Materials
Laboratory, National Chemical Laboratory,
Pune-411 008, INDIA**

Tel : 0091 20 2589 2614

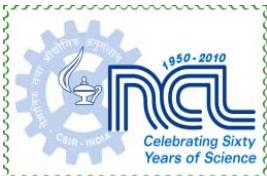
Fax : 0091 20 2589 2615

Email : s.sivaram@ncl.res.in

Visit us at : <http://www.ncl-india.org>

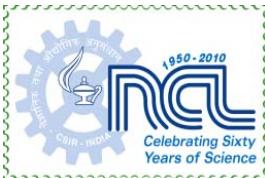
THE SCIENCE OF POLYMERS : PAST, PRESENT AND FUTURE

- The origins and the history
- How relevant is polymer material science today ?
- Where is technology leading ? What are the barriers and opportunities ?
- Where is science leading ? What are the new frontiers in polymer science ?



THE AGES OF HUMAN KIND

**Human Civilization has been marked by several ages,
all material based:**

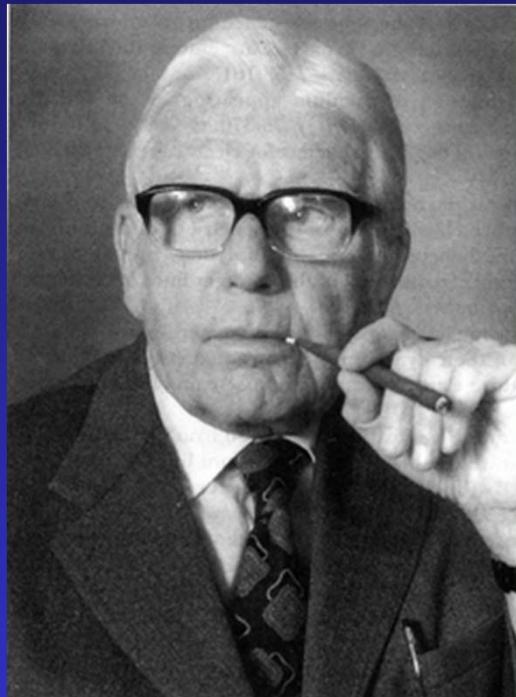

- Stone Age***
- Bronze Age***
- Iron Age (Steel. Aluminum)***

- Polymer Materials Age (Carbon based materials)***

Chemistry creates its own object. This creative power, similar to that of arts distinguishes it fundamentally from the other natural and historical sciences

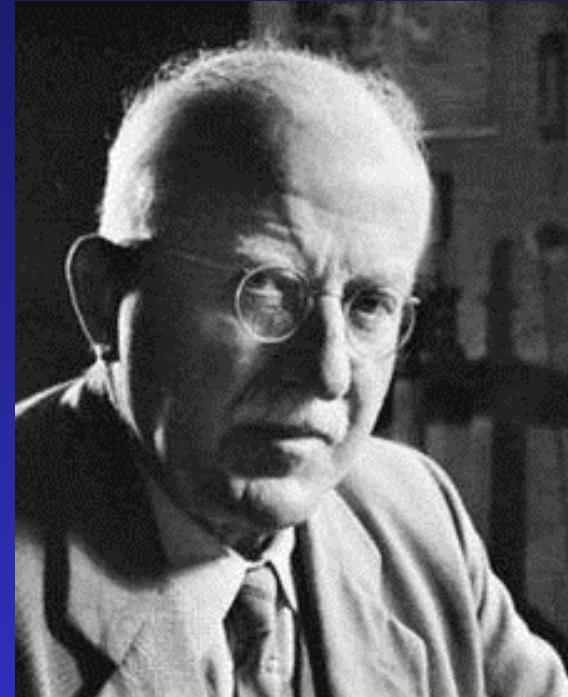
***Marcellin Bertholet, 1860
(1827- 1907)***

Bertholet gave the first general discussion on polymerism, that is, materials which have the same chemical composition, but differ only in their molecular weights

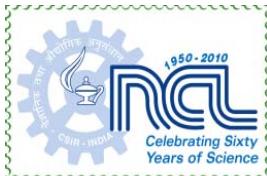


WHAT IS THE ORIGIN OF THE TERM POLYMER ?

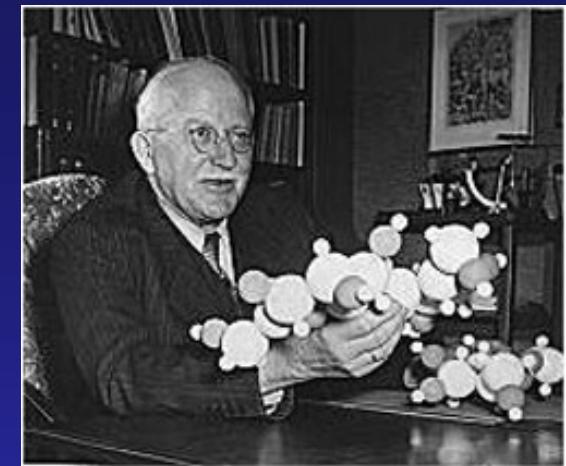
- Faraday in 1826 was puzzled by the fact that ethylene and butene differed in their gas density , but had the same elemental composition
- Berzelius was astounded by Faraday's observation and suggested that butene be referred to as a “polymer” of ethylene (1827, 1832). All through the nineteenth century, there are references to styrene being a polymer of acetylene and lactic acid as a polymer of formaldehyde
- Staudinger adopted this definition of Berzelius. For Staudinger, polystyrene was a polymer of styrene. However, he objected to the use of this term for products of polycondensation
- It was Carothers in 1929 who gave a general definition of the term. He defined them as substances “ whose structures may be represented by R-R-R- where -R- are bivalent radicals which in general are not capable of independent existence” (*J.Am.Chem.Soc.*, 51, 2548 , 1929)

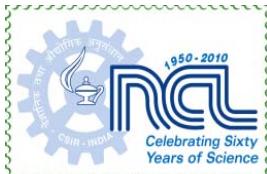


THE TALE OF TWO HERMAN(N)'S : THE POLYMER PIONEERS


*X Ray Crystallography of
Macromolecules to show that a molecule
could be larger than its unit cell (1926-28)*

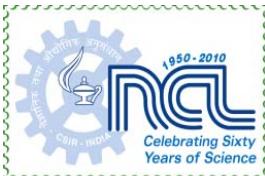
***Herman Mark
(1895-1992)***


*Concept of macromolecules as large
molecules linked together by covalent
bonds (1920)*


***Hermann Staudinger
(1881-1965)***

STAUDINGER AND THE ORIGIN OF MACROMOLECULAR CHEMISTRY

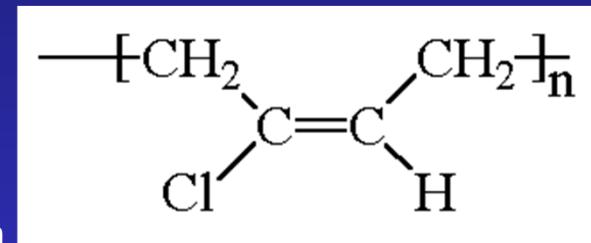
- First experimental evidence for existence of long chains came in 1922. Hydrogenation of natural rubber was not accompanied by the formation of volatile cyclic hydrocarbons (*Staudinger and Fritschi, Helv. Chim. Acta, 5, 785 (1922)*)
- First time the term “macromolecules” was used in chemistry
- The first definition of macromolecules: “For such colloid particles, in which the molecule is identical with the primary particle, and in which the individual atoms of this colloid molecule are linked together by covalent bonds, we propose for better differentiation the name macromolecule (*Staudinger, Ber. Dtsch. Chem. Ges., 57, 1203 (1924)*)
- Much of the rigorous proof for the existence of macromolecules will come from physical measurements (viscosity measurements, molecular weight measurements by ultracentrifuge, osmometry and light scattering as well as X Ray diffraction)



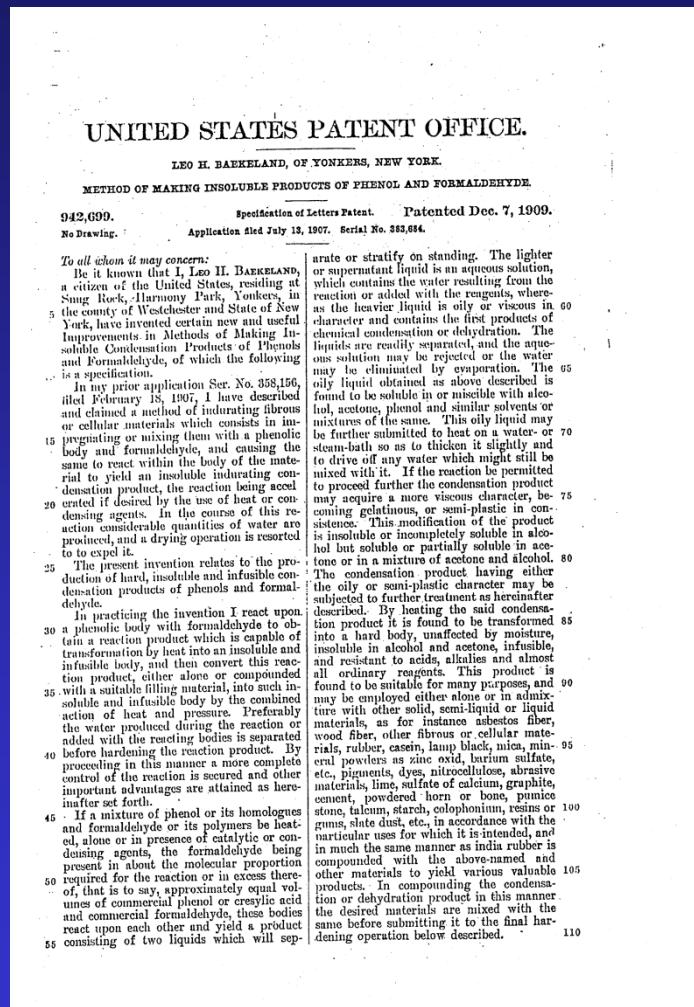
HERMAN MARK AND THE EVOLUTION OF THE STRUCTURE OF POLYMERS

- Mark, along with Staudinger and Carothers can be credited as a cofounder of Polymer Science
- Mark was trained as an organic chemist. His PhD thesis was on the chemistry of free radicals under the supervision of Schlenk
- With Polanyi , Mark began to explore the technique of Crystallography (X Ray and electron diffraction)for the study of organic molecules at Kaiser Wilhelm Institute
- One of the materials chosen was cellulose fiber. They found that cellulose fiber upon stretching leads to increase in modulus

Mark presents his results in a meeting of the Society of German Natural Scientists at Dusseldorf in 1926 ; He says that important information can be obtained from unit cells and space groups, even if detailed molecular structures are not known; He proposes that in polymers “lattice forces are comparable to intramolecular forces and the entire crystallite behaves like a large molecule”

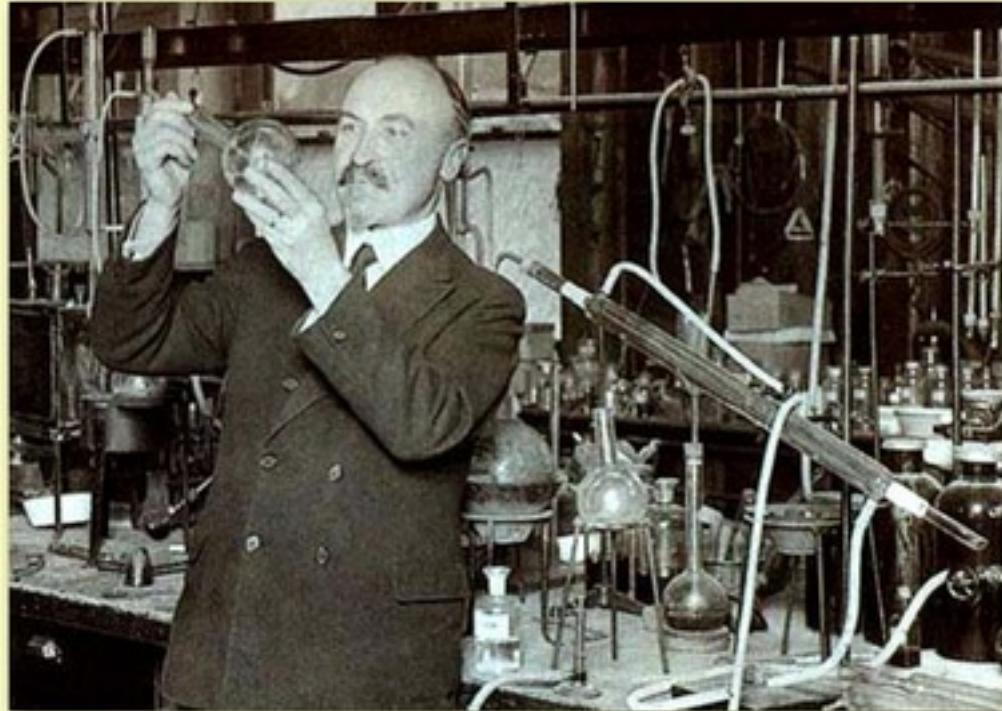

WALLACE CAROTHERS AND THE BIRTH OF RATIONAL POLYMER SYNTHESIS

1896-1937



- Trained as an organic chemist with Roger Adams, PhD, 1924
- Hired as a faculty at Harvard
- DuPont lured him to Wilmington Delaware to lead a fundamental research programme in organic chemistry and polymers
- by 1931, he had synthesized chloroprene and polymerized to a new synthetic rubber, called by DuPont as Neoprene
- Publishes his seminal papers in JACS in 1929 where he establishes the equivalence of organic and polymer forming reactions, namely esterification and polyesterification

Poly(chloroprene)


THE DAWN OF THE CHEMICAL INDUSTRY: THE MANUFACTURE OF BAKELITE

**US Patent 942, 699,
December 7, 1909**

- Baekland set out to discover a substitute for Shellac, then wholly supplied by India to the world
- In the process he made the first man made material, heralding the age of plastics, a discovery considered as revolutionary
- Heat resistant and insulating, demand from the burgeoning electrical goods industry
- Baekland named his new material Novolak
- He founded a company called General Bakelite Corporation in 1910 to manufacture the product

THE DAWN OF THE CHEMICAL INDUSTRY: THE MANUFACTURE OF BAKELITE

Leo Baekland (1863-1944)

When asked why he chose to work in the field of synthetic resins, he replied, "to make money"

POLYMER SCIENCE : THREE PHASES OF EVOLUTION

- Post Industrial Revolution (1760-1900)
- World War I and II (1900-1950)
- The Era of Inexpensive Petroleum (1950- 2000)

- The beginnings of chemistry as a science (1800-1900)
- Atoms and molecules; understanding structure and the nature of the chemical bond (1900-1940)
- Understanding reactive intermediates in chemistry: The birth of physical organic chemistry (1940-60)

NEW TO THE WORLD POLYMERS : THE GOLDEN ERA IN POLYMER SCIENCE

- PVC (1927) : Replaces natural rubber as cable insulation/ sheathing
- Polystyrene (1930) : First commercial production by IG Farben
- Neoprene, Poly(chloroprene (1931) : The first man made elastomer
- LDPE (1935) : radar, telecommunication cables
- PMMA (1936) : Canopies and cockpit covers for airplanes
- Nylon (1938) : Replaces silk and rayon, used in parachutes
- Poly(ethylene terephthalate) (1941) : The Terylene (ICI) and Dacron (DuPont) fibers
- Synthetic rubber (1940-45): Replaces NR; GR-S (SBR), Butyl , the largest mobilization of chemists and engineers towards war effort, part of the Manhattan project. Synthetic rubber capacity grew from close to zero in 1940 to 700, 000 tpa in 1945
- Silicones (1943):
- Poly(tetrafluoroethylene) (1946) : Teflon by DuPont
- Epoxy Resins(1947) : Araldite by CIBA

POLYMER MATERIALS : HISTORY

- Polymers were the product of post war renaissance in chemical industry driven by the promise of inexpensive petroleum derived feedstocks
- The fifties and sixties saw the introduction of many polymers that changed the face of human civilization
- From early curiosities polymers became an indispensable part of our daily living and so ubiquitous that we no longer realize how addicted we are to polymer materials !

1967

JOSEPH E LEVINE
MIKE NICHOLS
LAWRENCE TURMAN

THE GRADUATE

ANNE BANCROFT · DUSTIN HOFFMAN · KATHARINE ROSS
CALDER WILLINGHAM · BUCK HENRY · PAUL SIMON
SIMON · GARFUNKEL · LAWRENCE TURMAN
MIKE NICHOLS · TECHNICOLOR · PANAVISION ·

This
is
Benjamin.
He's
a little
worried
about
his
future.

Mr. McGuire: Come with me for a minute. I want to talk to you. I just want to say one word to you. Just one word

Ben: Yes, sir

Mr. McGuire: Are you listening ?

Ben: Yes sir, I am

Mr. McGuire: PLASTICS

Ben: Exactly how do you mean ?

Mr. McGuire: There is a great future in plastics. Think about it. Will you think about it?

POLYMERS FULFILLING MATERIAL NEEDS OF SOCIETY...

(Global consumption exceeds 250 million tons)

Precursor 19th Century → Semi Synthetics

- 1839 : Natural Rubber
- 1843 : Vulcanite / Gutta Percha
- 1856 : Shellac / Bois Durci
- 1862 : Parkesine
- 1863 : Celluloid
- 1894 : Viscose Rayon
- 1898 : Poly Carbonate

Natural Polymers

Semi Synthetics

1900 – 1950 → Thermoplastics

- 1908 : Cellophane
- 1909 : Bakelite
- 1926 : Vinyl or PVC
- 1927 : Cellulose Acetate
- 1933 : Polyvinylidene chloride
- 1935 : Low density polyethylene
- 1936 : Polymethyl Methacrylate
- 1937 : Polyurethane
- 1938 : Polystyrene
- 1938 : Teflon
- 1939 : Nylon and Neoprene
- 1941 : PET
- 1942 : LDPE
- 1942 : Unsaturated Polyester

1950 onwards → Growth Phase

- 1951 : HDPE
- 1951 : PP
- 1954 : Styrofoam
- 1960 : PC, PPO
- 1964 : Polyamide
- 1970 : Thermoplastic Polyester
- 1978 : LLDPE
- 1985 : Liquid Crystal Polymers

Plastics in Packaging

High Performance Plastics

It was a historic achievement in the relationship between structure and properties and this table provides a simple codification of the table to include all of the variations in the most common polymers.

Tangram Technology Periodic Table of Thermoplastics

TANGRAM
TECHNOLOGY

Consulting
Engineers

Increasing performance

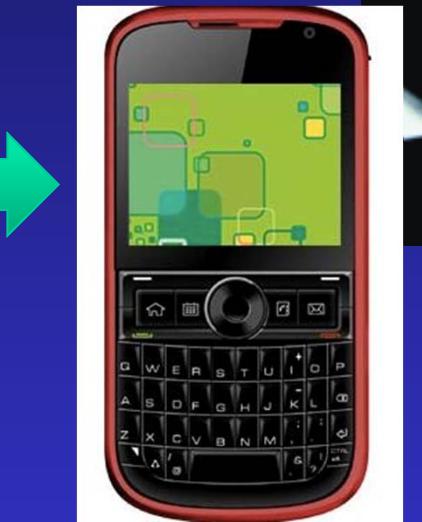
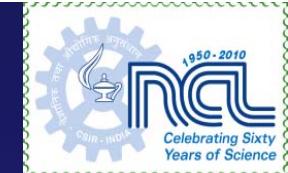
Commodity			Engineering			Performance		
Amorphous	PS-HI High Impact Polystyrene	PS-GP General Purpose Polystyrene	ABS Acrylonitrile Butadiene Styrene (Copolymer)	SAN Styrene Acrylonitrile (Copolymer)	PMMA Polymethyl methacrylate (Acrylic)	PPO (Modified) Polyphenylene Oxide	PC Polycarbonate	PAR Polyarylate
	PVC-P Plasticised Polyvinylchloride	SBS Styrene-Butadiene-Styrene (Copolymer)	SMA Styrene-Maleic Anhydride (Copolymer)	ASA Acrylonitrile Styrene Acrylate (Copolymer)	SB Styrene-Butadiene (Copolymer)			PSU Polysulphone
	PVC-U Unplasticised Polyvinylchloride	CA Cellulose Acetate	CAB Cellulose Acetate Butyrate	CAP Cellulose Acetate Propionate	CP Cellulose Propionate	PET-G Glycolised Polyethylene terephthalate	PVC-UX Crosslinked Unplasticised PVC	PES Poly-ethersulphone
	PVC-U High-Impact Unplasticised PVC						PVC-C Chlorinated PVC	PPS Poly-ethersulphone (Block copolymer)
								PEI Polyetherimide
								PAI Poly-amicimide
								PI Polyimide
								PBI Polybenzimidazole
Semicrystalline	PE-LD Low Density Polyethylene	PE-LLD Linear Low Density Polyethylene	PE-MD Medium Density Polyethylene	PMP Polymethyl pentene	EVA Ethylene-vinyl Acetate (12% VA)	PE-X Crosslinked Polyethylene	PB Polybutene-1 (Polybutylene)	PE-UHMW Ultra-high Molecular Weight PE
	PE-C Chlorinated Polyethylene	PE-VLD Very Low Density Polyethylene	EMA Ethylene-methyl Acrylate		PBT Polybutylene-terephthalate	PA 6 Polyamide 6 (Nylon 6)	PA 66 Polyamide 66 (Nylon 66)	PA 11 Polyamide 11 (Nylon 11)
	PP Polypropylene (Homopolymer)	PP Polypropylene (Copolymer)			PET Crystalline Polyethylene-terephthalate	PA 6/10 Polyamide 6/10 (Nylon 6/10)	PA 6/12 Polyamide 6/12 (Nylon 6/12)	PA 12 Polyamide 12 (Nylon 12)
	PE-HD High Density Polyethylene					POM Poly-oxyethylene (Acetal Copolymer)	EVOH Ethylene-vinyl Alcohol	PPA Poly-phthalamide (Amorphous)
							PPS Polyphenylene Sulphide	PARA Polyaryl amide
							FEP Fluorinated ethylene-propylene	
							ETFE Ethylene-tetrafluoroethylene	
							PTFE Poly-tetrafluoroethylene	
							PVDF Poly-vinylidene-fluoride	

KEY TO MAJOR POLYMER FAMILIES:

Styrenes Polyolefins Vinyls Cellulosics Polyesters Polyamides Acrylics Polycarbonates Acetals Polysulphones Imides Fluoropolymers

This table is for comparison only and no responsibility can be taken for the accuracy or the use of the information contained herein. Copyright: Tangram Technology Ltd. (www.tangram.co.uk). The table may be freely reproduced for non-profit purposes provided full acknowledgement of the copyright is given. Comments and suggestions for improvement are welcome.

Reduced Version, Issue 2: February 2008

I am inclined to think that the development of polymerization is, perhaps, the biggest thing that chemistry has done, where it has the biggest effect on everyday life

*Lord Alexander Todd (1907-1997)
Nobel Laureate, 1957*

POLYMER MATERIALS : FROM VISIBLE TO INVISIBLE

NEW POLYMER INTRODUCTION : ENTRY BARRIERS

- No new polymers has entered the market since the early nineties. The last ones were poly(propylene terephthalate) by DuPont (PTT), poly(ethylene naphthalate) by Teijin (PEN) and Nature Works Poly (Lactic Acid)s by Cargill.
- Several new polymers developed in the last fifteen years have been abandoned after market introductions. Example, Carilon (ethylene-carbon monoxide copolymers) by Shell and Questra (syndiotactic polystyrene), PCHE (hydrogenated polystyrene) and Index (ethylene –styrene copolymers) by Dow.
- The rate of growth of markets for the new polymers introduced after the nineties have been painfully slow.

POLYMER SCIENCE AT CROSSROADS

- Polymer science is at the end of one wave of development and struggling to begin another; perceptible shift in the centre of gravity of the discipline
- There are still many important opportunities in both fundamental and applied science
- The disciplines offers fewer puzzles to solve; What confronts are large number of problems
- Longer term curiosity driven research is more important than in the past, but harder to justify

**In the future, functions will be more important than molecules.
Molecules are no longer enough (they never really were)**

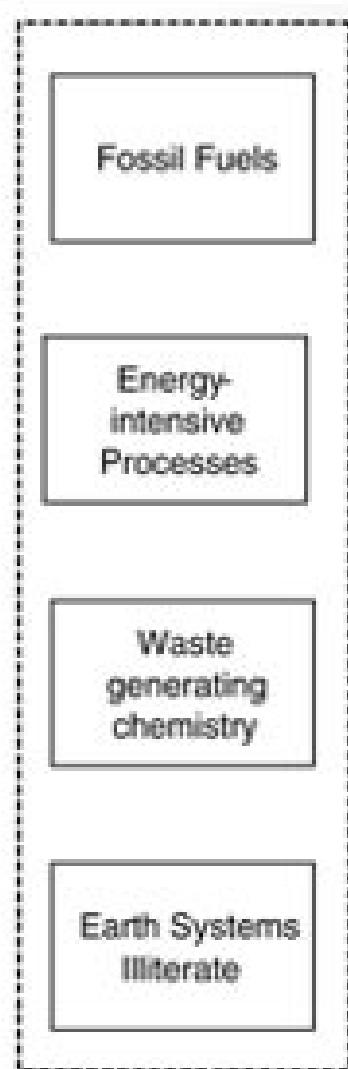
FUTURE OF POLYMER SCIENCE

- Systems, not molecules
- Functions, not molecular structure

No longer “What is it?” but “What does it do?”

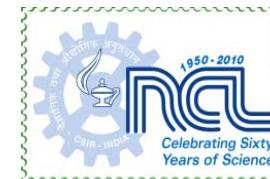
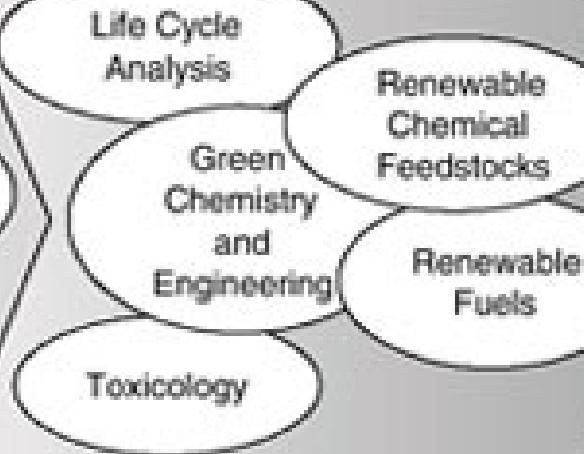
POLYMER MATERIALS : SUSTAINABILITY CHALLENGE

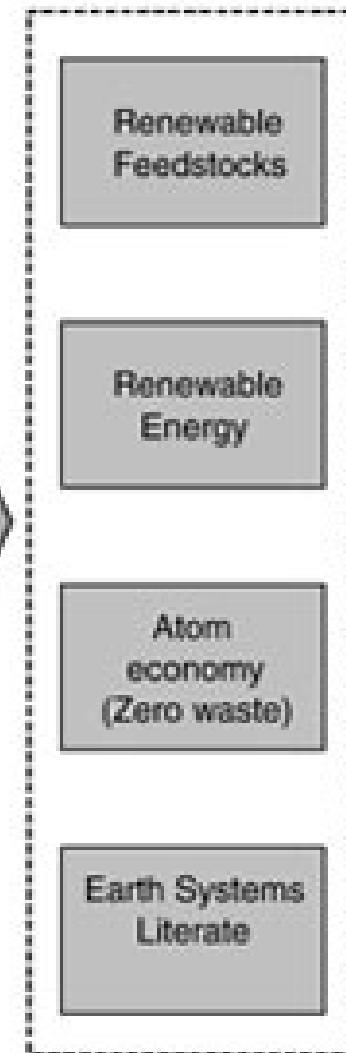
- Excessive dependence on fossil fuel ; a finite natural resource
- Persist in the environment


FROM HYDROCARBONS TO CARBOHYDRATES


- The polymer industry is increasingly focused on the concept of sustainability
- There is only so much petroleum on earth and with time, oil will become increasingly rare
- Chemicals / feed stocks manufacturing will progressively shift to natural gas in the short term and renewable carbohydrate resources in the long term

Feed-stocks for polymers will slowly , but certainly, shift to renewable and sustainable resources during the next two decades



Current Paradigm


2005–2025:
Continued use
of fossil fuels

2025–2105:
Phase out of fossil fuels

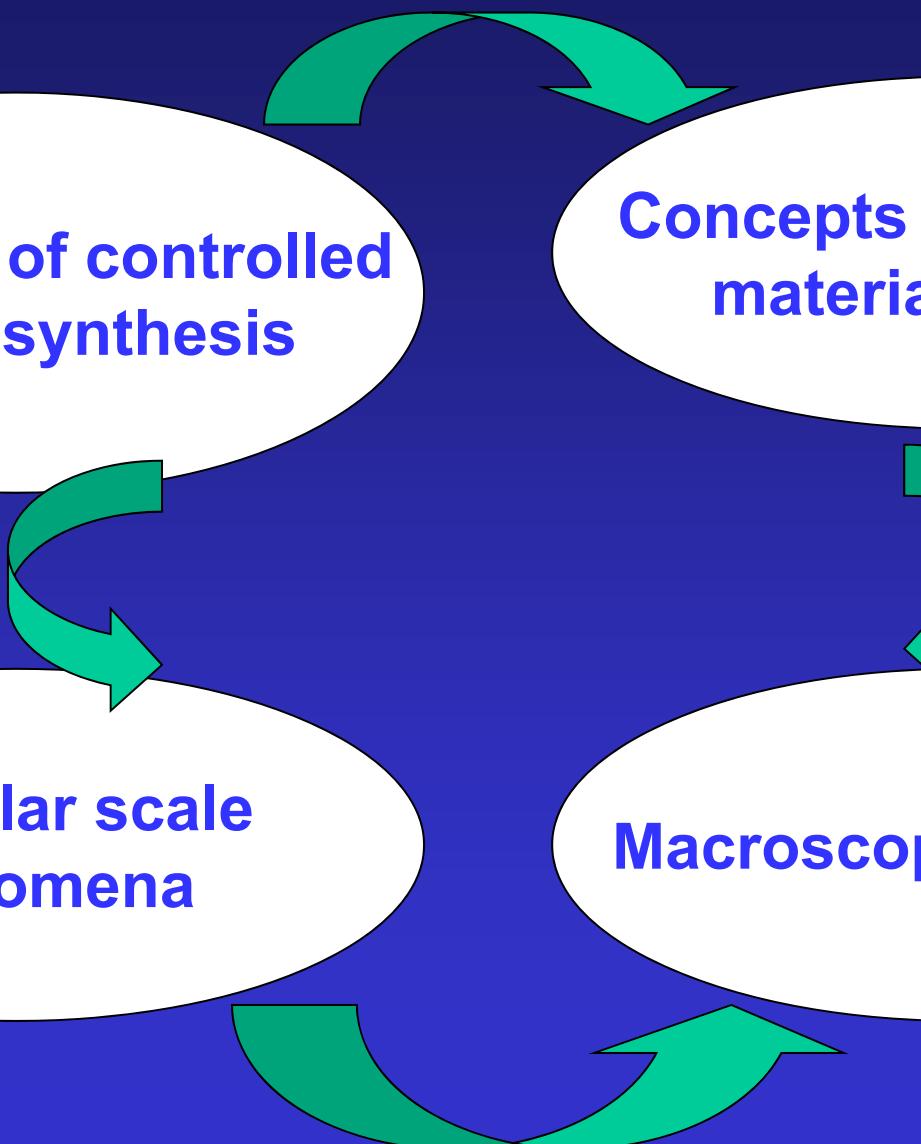
Ideal Vision

2005

2025

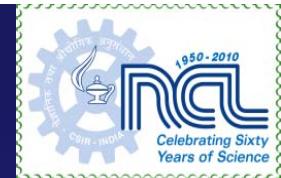
2105

GOALS OF POLYMER SCIENCE



Techniques of controlled polymer synthesis

Concepts and goals of material science


Molecular scale phenomena

Macroscopic functions

NEW DESIGN PARADIGMS IN POLYMER SYNTHESIS

Controlled Polymer synthesis

- Polymerization through rational catalyst / initiator design
- Mono-disperse step growth polymers through iterative synthetic methods
- Molecular self assembly methods applied to synthesis of polymers with novel topologies

CHAIN LENGTH

Determines

- Mechanical strength
- Thermal behavior
- Processability
- Adsorption at interfaces

Control of chain length

- Still difficult and is determined largely by statistics

Challenge.....

- Synthesis of polymers with absolutely uniform length for a wide range of polymers

CHAIN SEQUENCE

Determines

- Thermal behavior
- Crystalline properties

Copolymer sequence

- Random
- Alternating
- Block
- Graft

Challenge.....

- Synthesis of macromolecules with precisely defined sequences

CHAIN ISOMERISM

Determines

- Thermal behavior
- Morphology
- Crystallinity

Polymer stereochemistry

- Geometrical isomerism
- Regioisomerism
- Stereoisomerism

Challenge.....

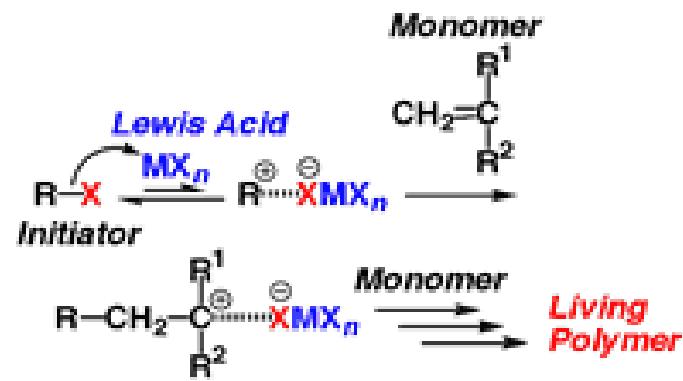
- Control polymer stereochemistry through rational design of catalysts

CHAIN TOPOLOGY

Determines

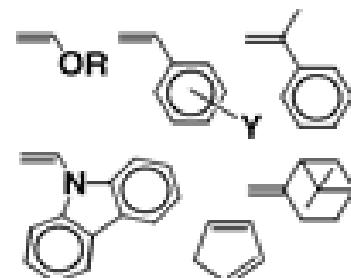
- Crystalline properties, solubility and rheological behavior

Diversity of polymer architectures

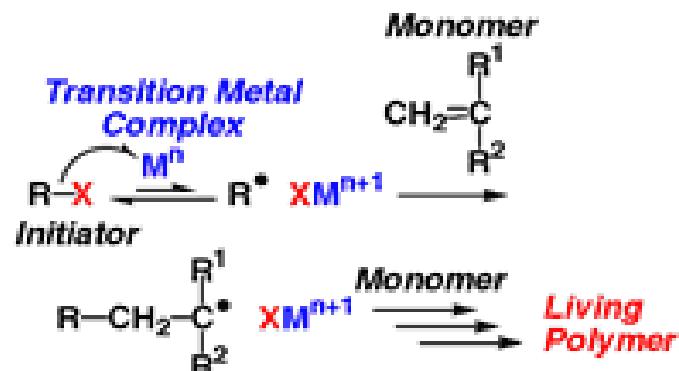

- Linear, Branched, Hyper-branched
- Stars, Dendrimers
- Catenanes , Rotaxanes
- Ribbons , Wires

Challenge.....

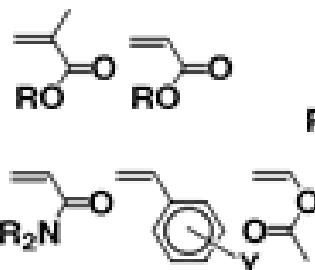
- To provide control of both topology and molecular geometry over large length scales in real space

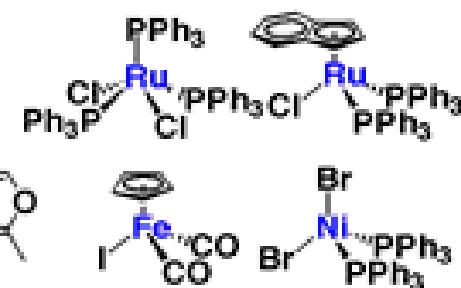

Living Cationic Polymerization

Reversible Activation

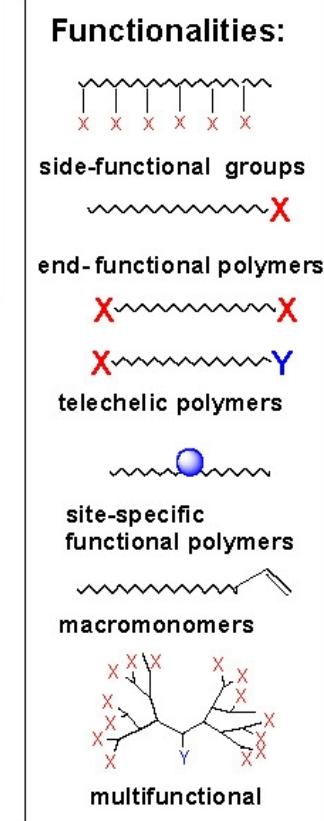
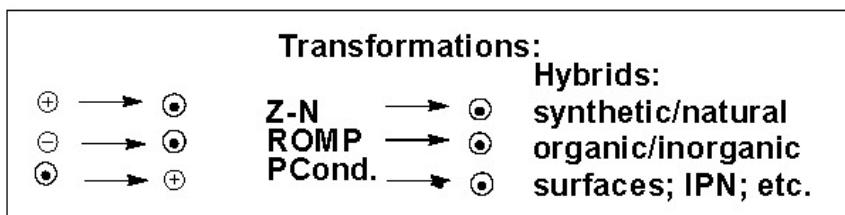
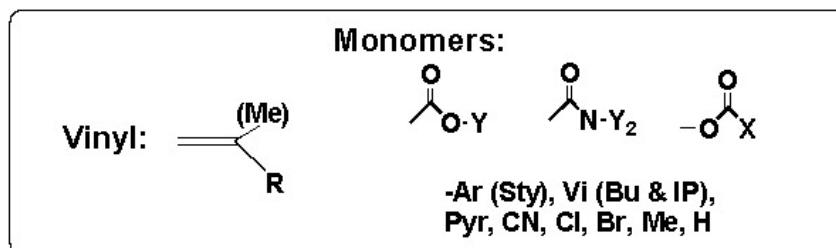
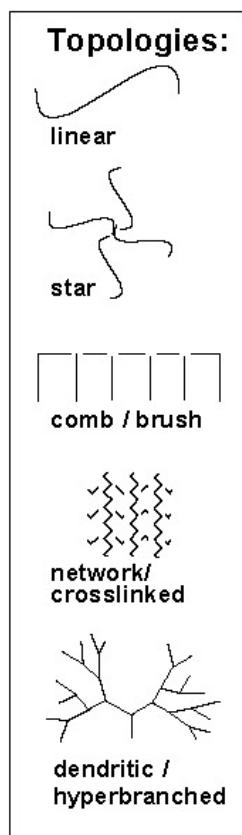

$\text{CH}_2=\text{CR}^1\text{R}^2$
(Monomer)

MX_n
(Lewis Acid)


Living Radical Polymerization


Reversible Activation

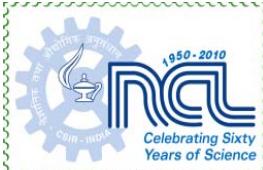
$\text{CH}_2=\text{CR}^1\text{R}^2$
(Monomer)

M^n
(Metal Complex)

What Can Controlled/ Living Polymerizations Do ?

$$DP_n = \Delta[M]/[I]_0; \quad 200 < M_n < 10^6 \text{ (or more?); } 1.01 < M_w/M_n < 1.5 \text{ & designed MWD; tacticity}$$



New Methods of Polymer Synthesis

ROMP
Conjugated Polymers
RAFT
Click Chemistry
Bis orthogonal ligation

Control of structure, function, tacticity, monomer sequence, topology and precision end group control

BIOINSPIRED STRUCTURAL MATERIALS

STRUCTURAL MATERIALS

FUNCTIONAL MATERIALS

MACROCOMPOSITES

- Shear
- wetting
- Orientation

BIOCOMPOSITES

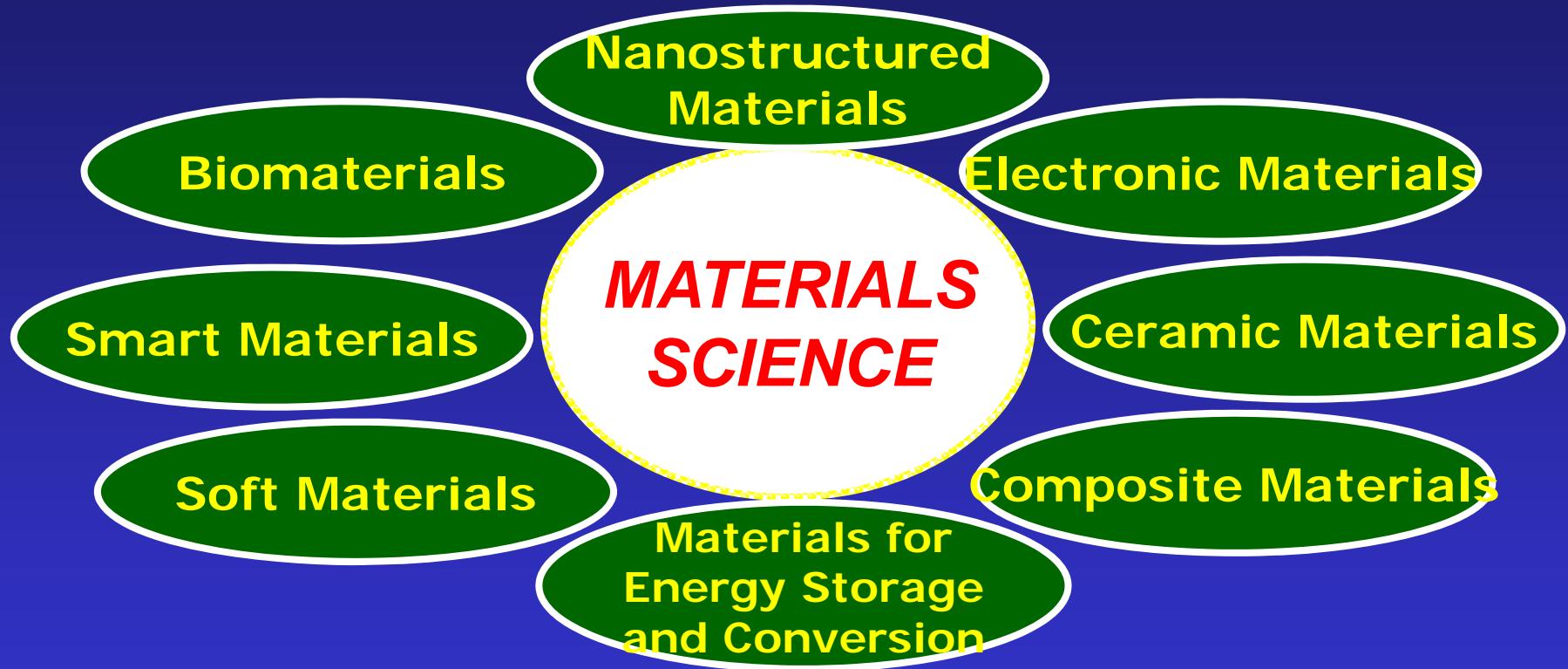
- Molecular self assembly
- Hydrogen bonding
- Hydrophobic interaction

NANOCOMPOSITES

- Intercalation and exfoliation
- In-situ polymerization
- Polymerization in constrained spaces
- Nanofibers and nanotubes

BIO INSPIRED MATERIALS

- Spider Silk : High Modulus Fiber
- Abalone / Mollusk Shell : Balancing impact resistance with strength
- Gekko Feet : Adhesion in wet conditions
- Mantis Shrimp : Light weight, stiff and impact resistance



POLYMER SCIENCE : THE NEXT WAVE

- Research in polymer science began about sixty years ago as a discipline borne out of disciplines of chemistry , physics and engineering
- For over half a century the discipline flourished as an independent discipline – in education and research
- Explosive developments in the emergence of new polymers and the birth and growth of the polymer industry paralleled the growth of polymer science as a discipline
- Polymer science as a stand alone discipline has probably now attained maturity. Most of the major challenges facing this discipline today are at the interface of polymer science with material science, biology, medicine or physics
- The next frontiers that await polymer scientist will need deep collaboration with multiple disciplines

THE NEW DIMENSIONS OF MATERIAL SCIENCE

INCREASINGLY POLYMER SCIENCE WILL BE AN ENABLING SCIENCE ; TO CREATE ADVANCED MATERIALS WITH USEFUL FUNCTIONS IN COMBINATION WITH OTHER MATERIALS

ADVANCED AND FUNCTIONAL MATERIALS

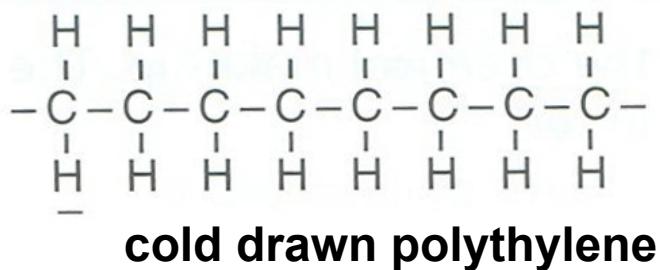
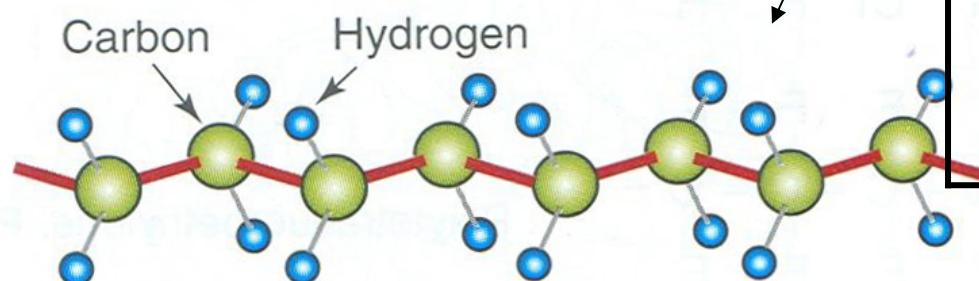
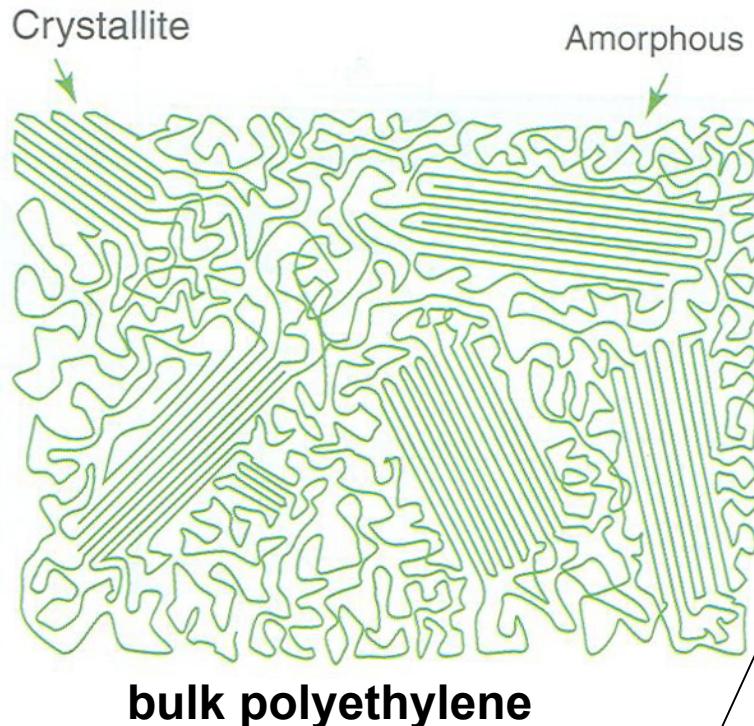
- Functional polymers
- Polymers with precisely defined shape, size and topology (e.g Dendrimers and hyper branched polymers)
- Stimuli responsive materials
- Super and supra-molecular materials
- Nano-materials
- Bio-molecular materials

Research driven by emerging developments in electronics, photonics, information technology and medicine. All new discoveries likely to occur at the interface of polymer science with chemistry, biology and physics

COMPLEX POLYMER SYSTEMS

- **Organic –inorganic hybrids, stimuli responsive polymers, polymer networks with defined functions and control, block and hetero- copolymers, polymers that self assemble into large supramolecular forms with hierarchical order and polymer materials capable of interacting with other materials, especially biological materials**

- **Key fundamental scientific challenges :**
 - **Directing structures via controlled kinetic and thermodynamic pathways**
 - **Complex structure via chain architecture**
 - **Entropy driven assembly in multi-component hybrid systems**
 - **Template assisted synthesis of complex systems**

SOME UNSOLVED PROBLEMS : THE CHALLENGE OF THE OPPOSITE

- High molecular weight polymers without chain entanglement
- High glass transition temperature with high ductility; Polymers having T_g between 110 and 150 degrees celsius
- High impact with high modulus
- Chain stiffening through conventional processing
- High optical clarity with high electrical conductivity

INFLUENCE OF C-C BOND ON YOUNG'S MODULUS

bulk polyethylene	$E : 0.2\text{GPa}$
cold drawn polyethylene	$E: 300 \text{ GPa}$
dc diamond	$K : 440 \text{ GPa}$,
fcc diamond	$\sigma >> 450 \text{ GPa}$
diamond nanorods from (111)	$K : 490 \text{ GPa}$

Disentangled Polyethylenes

High Thermal Conductivities, $>100 \text{ W/m/K}$; Theoretical Value, $\sim 350 \text{ W/m/K}$

Defects (chain ends, entanglements) act as phonon scattering sites for heat transfer

NOVEL MATERIALS

- Self Healing
- Phase Change
- Porous Polymers
- 2-D Polymers
- Polymer Nano particles
- Polymer Surface Modification
- Polymers with barrier to moisture and oxygen

POLYMER SCIENCE : QUO VADIS

Macromolecules

Subscriber access provided by National Chemical Laboratory | Pune 411008, INDIA

Perspective

Research in Macromolecular Science: Challenges and Opportunities for the Next Decade

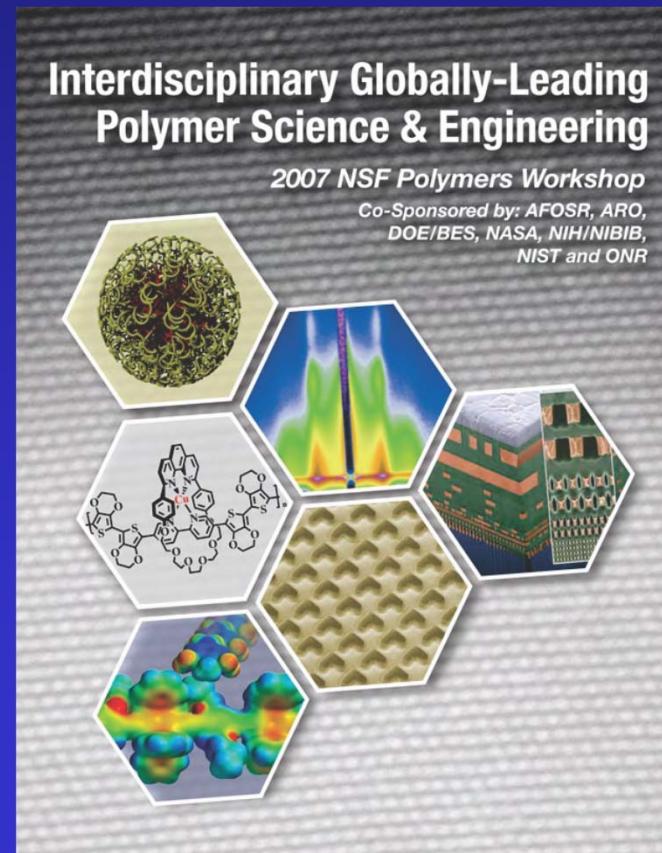
C. K. Ober, S. Z. D. Cheng, P. T. Hammond, M. Muthukumar, E. Reichmanis, K. L. Wooley, and T. P. Lodge

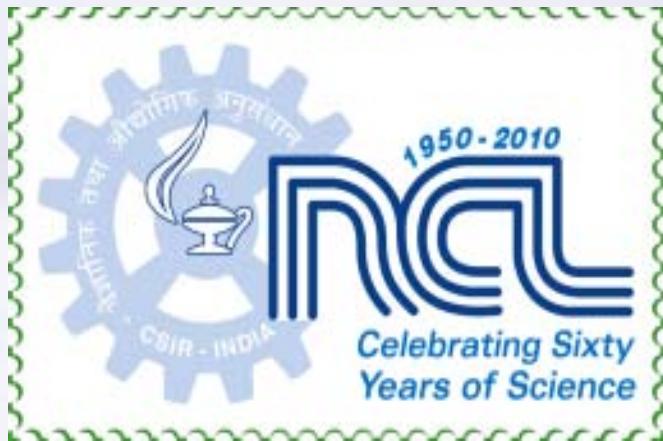
Macromolecules, 2009, 42 (2), 465-471 • DOI: 10.1021/ma802463z • Publication Date (Web): 10 December 2008
Downloaded from <http://pubs.acs.org> on February 20, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article


[View the Full Text HTML](#)


ACS Publications
high quality. High impact.

Macromolecules is published by the American Chemical Society, 1155 Sixteenth Street N.W., Washington, DC 20036

**Macromolecules 42,
January 27, 2009**

Research in Macromolecular Science: Challenges and Opportunities for the Next Decade

THANK YOU